
16 CrossTalk—May/June 2011

PEOPLE SOLUTIONS TO SOFTWARE PROBLEMS

Matthew R. Kennedy, DAU
David A. Umphress, Ph.D., Auburn University

Abstract: Today’s systems are increasingly threatened by unanticipated
change arising from volatility in user requirements, Information Technol-
ogy (IT) refresh rates, and responses to security vulnerabilities. With the
rapidly changing world of IT, long static development cycles of a Software
Intensive System (SIS), a system in which software represents the largest
segment in one or more of the following criteria: system development
cost, system development risk, system functionality, or development time
[1] may doom the system before development begins.

An Agile Systems
Engineering Process
The Missing Link?

A report from the U.S. Army War College estimates that com-
mercial electronics have a typical refresh rate of 12-18 months
but may be less [7].

Cyber security further complicates the picture. The rate
at which vulnerabilities are identified in a system cannot be
predicted. According to the National Vulnerabilities Database,
between 2000 and 2009 there was an average of 3,825
vulnerabilities reported each year due to software flaws alone
[8]. The need for a responsive systems engineering process to
rapidly address unforeseen vulnerabilities is imperative for the
development of a secure system.

The Office of the Assistant Secretary of Defense for Net-
work Information Integration conducted an analysis of 32 major
information system acquisitions and found the average time to
deliver the Initial Operating Capability was 91 months [3]. With
the DoD’s history of long delivery cycles and the short time re-
quired for technology refresh, the systems engineering process
needs to be responsive to changes introduced both by the user
and technology.

This inability to respond rapidly to change is nothing new.
Software engineering recognized the pitfalls of a strictly sequen-
tial development process a number of years ago. The contempo-
rary school of thought in software engineering has evolved away
from considering a waterfall approach as the primary sequence
of development activities and toward approaches that embrace
change by segmenting software development into manageable
change-resistant increments and allowing change to take place
at increment boundaries [5]. Ultra-modern approaches–known
as agile processes–have emerged to match the pace in which
change is encountered during software development. Agility is
“the speed of operations within an organization and speed in
responding to customers (reduced cycle times)” (Massachusetts
Institute of Technology). The degree of agility when developing
an IT system is the organization’s ability to respond to changing
requirements and technology. With the quick technology refresh
rate, long development cycles could place a system in a state
of obsolescence prior to initial release. With the ever-changing
world of technology, the need to change without notice through-
out the development lifecycle is paramount to success.

Just as the software community has moved toward a more
agile approach to become more responsive to changes through-
out the development lifecycle, the systems engineering com-
munity needs to follow a similar approach to remain competitive
in today’s rapidly changing environment.

Past Performance
Failure to deliver a successful SIS can rarely be attributed to

one project deficiency; however, the inability to rapidly adapt to
change appears to be an underlying theme in many SIS devel-
opment failures. A successful SIS is defined as a system that is
on time, within budget, and contains all of the required features
and functions [9]. Instead of steadily making improvements on
the successful delivery of SISs, the Standish Group 2009 Chaos
report showed a “marked decrease in project success rates,” in

Delivering a SIS that is on time, within budget, and on schedule
has been shown to be problematic [2]. This problem will only in-
crease as the complexity of SISs within the DoD grows and more
functionality within systems is relegated to software [3] [4].

Traditional systems engineering portrays systems develop-
ment as a top-down, waterfall-centric process, one that relies on
explicating requirements as early as possible. Such a perspec-
tive tends to postpone modifications until the maintenance
phase [5], thus thwarting early insertion of technology or a
nimble response to changes in user needs. Though the technol-
ogy refresh rate varies from system to system, a report from
the state of Michigan shows the following industry computer
technology refresh trends:

1. 40% of companies are on a four-year cycle for refreshing
 personal computers (hardware), and

2. Microsoft plans a two-year cycle to release a new operating
 system (software) [6].

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAY 2011 2. REPORT TYPE

3. DATES COVERED
 00-00-2011 to 00-00-2011

4. TITLE AND SUBTITLE
An Agile Systems Engineering Process: The Missing Link?

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Defense Acquisition University,9820 Belvoir Road ,Fort Belvoir
,VA,22060

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Today?s systems are increasingly threatened by unanticipated change arising from volatility in user
requirements, Information Technology (IT) refresh rates, and responses to security vulnerabilities. With
the rapidly changing world of IT, long static development cycles of a Software Intensive System (SIS), a
system in which software represents the largest segment in one or more of the following criteria: system
development cost, system development risk, system functionality, or development time [1] may doom the
system before development begins.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

5

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

CrossTalk—May/June 2011 17

PEOPLE SOLUTIONS TO SOFTWARE PROBLEMS

which only 32% of projects were successfully delivered when
compared to the 35% reported in their 2006 report [9] [10].

The U.S. Government Accountability Office (GAO), an
“independent, nonpartisan agency that works for Congress,”
investigates how the government spends taxpayers’ dollars [11].
The Air Force is developing an F-22 aircraft that is intended
to provide increased capabilities over current aircraft. A GAO
report found the program has undergone several changes since
the development began in 1986 and the Air Force cannot afford
to purchase the quantities of the aircraft that were initially antici-
pated. This was partially attributed to the Air Force adding more
robust air-to-ground attack requirements in 2002. In addition
to the change in requirements, the Air Force has determined
that a revised computing architecture, as well as new computer
processors were needed to support planned enhancements,
both of which further increased program costs [12]. Previous
experience shows that changes within a SIS are inevitable,
whether or not there is a change in requirements or technology.
Though predicting these changes may be difficult, processes
can be structured to be more responsive to these unanticipated
changes. Increasing agility within the systems engineering
process is one mechanism that may result in increasing the suc-
cessful delivery of a SIS.

Growth of SISs
The software within today’s systems is only increasing. Ex-

amining the correlation between the Executable Software Lines
of Code (ESLOC) and time in various DoD systems (Figure
1) shows a steady increase in ESLOC in related systems over
time. The Aegis system introduced in the early 1980s had less
than 2 million ESLOC. The Virginia SSN introduced roughly 20
years later contained over double the ESLOC and the estimated
ESLOC for the DDX system is just under 10 million.

The increase in ESLOC means that more of the system’s
functionality is being performed by software. Functions per-
formed by software in DoD aircraft (Figure 2) has increased
from 8% for the F-4 Phantom II in 1960 to 80% for the F-22
Raptor in 2000. With the proliferation of software within current
systems, problems that were inherently software are evolving
into system problems [4].

DoD systems are not the only systems experiencing an
increase in software; the automotive industry has also seen an
increase. In 1977 the Oldsmobile Toronado contained the first
productive microcomputer Electronic Control Unit used for only
electronic spark timing [13]. Just a year later, the Cadillac Seville
offered on its Cadillac Trip Computer a software-driven display
of speed, fuel, trip, and engine information [13]. By 1981, GM
was using microprocessor-based engine controls executing
roughly 50,000 Software Lines of Code (SLOC); today it is
estimated that a premium automobile takes dozens of micropro-
cessors running 100 million SLOC [13].

When determining the impact of software on overall system
cost, Broy notes that “the cost of software and electronics can

Figure 1: Increase in Software in DoD Systems

Figure 2: Functions Performed by Software (Nelson and Clark)

reach 35% to 40% of the cost of a car [13]. A study conducted
by the Center for Automotive Research had similar findings [14]
stating, “Software made up only 16% of a vehicle’s total value in
1990, this figure had increased to 25% by 2001. By 2010, the
share of a car’s total value is expected to climb to almost 40%.”

The inability to deliver a successful SIS will only be exacer-
bated as software continues to become an increased portion of
a system’s composition.

SIS Development
Development of a SIS can be envisioned as an amalgamation

of three aspects: business, system, and software. Though there
is some overlap among these aspects, general responsibilities
can be attributed to each aspect.

The business aspect is responsible for the overall acquisi-
tion of the system including contracting, funding, operational
requirements, and overall system delivery structure. The system
aspect is responsible for the overall technical and technical
management aspects of the system and serves as the interface

18 CrossTalk—May/June 2011

PEOPLE SOLUTIONS TO SOFTWARE PROBLEMS

between management and engineers. The software aspect is
responsible for the software items contained in the SIS.

When developing a SIS, all three aspects need to work in
harmony to produce a successful final product. Traditionally,
when using a once-through development methodology, the busi-
ness aspect would provide the funding and operational require-
ments to the system aspect. The system aspect would further
decompose the requirements and allocate them to software or
hardware. These items would then be developed and integrated
resulting in a completed system. Given that major information
systems average a 91-month gap from operational requirements
definition to system delivery, defining requirements that far in

advance of technology that is changing every 12 to 18 months
suggests that the end result will not be an up-to-date system.

The need for increased agility has been identified within the
business aspect and there are initiatives aimed at develop-
ing an agile framework within this aspect. Per the fiscal year
2010 National Defense Authorization Act, section 804, the U.S.
Congress directed the Secretary of Defense to, “develop and
implement a new acquisition process for IT systems” [15]. This
new Defense Acquisition System process must include: Early
and continual involvement of the user; multiple, rapidly executed
increments or releases of capability; early, successive prototyp-
ing to support an evolutionary approach; and a modular, open-
systems approach [15].

Moreover, this process should be based on the March 2009
report of the Defense Science Board (DSB) Task Force on De-
partment of Defense Policies and Procedures for the Acquisition
of Information Technology [15]. The DSB report concluded, “The
conventional DOD acquisition process is too long and too cum-
bersome to fit the needs of the many IT systems that require
continuous changes and upgrades” [3].

The report noted that an agile acquisition approach would
increase IT capability and program predictability, reduce cost,
and decrease cycle time.

In addition to the emerging Agile IT Acquisition Lifecycle, the
DoD developed an agile requirements process for IT Systems
called the “IT Box” [16]. The Joint Requirements Oversight
Council Memorandum 008-08 stated, “IT programs are dynamic
in nature and have, on average, produced improvements in per-
formance every 12-18 months” [17]. Recognizing the need for
performance improvements, the IT Box allows IT programs the
flexibility to incorporate evolving technologies.

Lack of evidence implies the system aspect does not have
similar agile initiatives. There are several systems engineering
guides and standards available such as the Defense Acquisition
Guidebook (DAG) Chapter 4, EIA-632, IEEE std 1220-2005,
ISO/IEC 15288, and ISO/EIC 26702 [18,19,20,21,22]. In
practice, no single systems engineering standard is used, but
instead a combination of standards. For example, the Air Force
produced Instruction 63-1201, Life Cycle Systems Engineer-
ing, which references numerous systems engineering standards
and is to be used in the development of all AF systems [23].
These guides and standards provide the overall structure of the
systems engineering process as well as identify characteristics
required during the process.

IEEE Std 1220-2005 defines a systems engineering process
(Figure 3) as, “a generic problem-solving process, which provides
the mechanisms for identifying and evolving the product and pro-
cess definitions of a system.” It further notes that the SEP should
be applied throughout the system lifecycle for development and
further identifies the lifecycle stages (System definition stage,
Preliminary design stage, Detailed design stage, Fabrication,
assembly, integration, and test stage, Production and customer
support stages). However, it does not detail how the SEP should
be applied from an agile project management perspective.

Figure 3: Std 1220-2005 Systems Engineering Process

Figure 4: DAG Systems Engineering Processes (University, DAU Information
Resource Management 202 Course)

CrossTalk—May/June 2011 19

PEOPLE SOLUTIONS TO SOFTWARE PROBLEMS

In contrast to IEEE Std 1220-2005, the DAG, Chapter 4,
divides the SEP into two categories: Technical Management
Processes and Technical Processes [18]. At a high level, the ge-
neric Technical Processes frame the steps necessary to develop
a system whereas the Technical Management Processes are
used to manage the technical development (Figure 4).

In addition to further describing key activities in each process
area, the DAG contains some systems engineering best prac-
tices such as employing a modular design and designating key
interfaces [18].

Current systems engineering guides and standards provide
a waterfall-like structure and key systems engineering char-
acteristics that are imperative for successful system develop-
ment. However, they do not provide a framework for planning
and managing projects that allow systems engineers to rapidly
respond to the changes. The design and implementation of such
a framework is left to the systems engineers who are provided
little guidance. The structure and characteristics provided need
to remain intact while their application needs to be framed such
that it allows for an agile implementation.

Similar to the system aspect, the software aspect has a num-
ber of standards available such as ISO 12207, ISO 9001 and

the Capability Maturity Model Integrated (CMMI®) [24,25,26].
The CMMI was a collaborative effort by the U.S. government,
industry and Carnegie Mellon [27] that contains a process
improvement model consisting of best practices addressing
activities throughout the products lifecycle [24].

ISO 12207 “contains processes, activities and tasks that are
to be applied during the acquisition of a system that contains
software” [26]. A limitation identified within ISO 12207 is that
it does not specify details on how to implement the identified
activities or tasks [26].

As with the system aspect, the software aspect guides and
standards only provide the characteristics required; however,
the software aspect has agile frameworks built on top of these
standards, that allow software to be developed in an atmo-
sphere where requirements are changing. One such agile frame-
work is called Scrum. Scrum was formalized by Ken Schwaber
at the Object-Oriented Programming, Systems, Languages and
Applications conference in 1995 [28]. Since Scrum has been
in existence for 15 years, it has a large collection of lessons
learned, as well as success stories, which have contributed to its
current state. These additional frameworks allow the Software
Aspect increased agility during the development process.

Zero Software Defects
Systems Engineering
Software Acquisition
Agile Systems Engineering
Software Technical Readiness
Understanding Systems Weaknesses
Human Capital/Workforce Development

WITH

SYNCing-UPSYNCing-UP

23rd Annual

Opening General Session
Status of the NRO
Bruce Carlson, Director
National Reconnaissance Office
Speaker Lunch
Ultra-Large-Scale (ULS) Systems
and Their Impact on the DoD
Douglas C. Schmidt
Software Engineering Institute
(SEI)
Plenary Session
Stevens Award
Closing Session Speaker Lunch
Addressing the Challenge of
Protecting Our Software
Intensive Systems
John M. Gilligan
Gilligan Group, Inc.

 120 + TECHNICAL

PRESENTATIONS

 COLLABORATIVE

NETWORKING TRAINING AND

CERTIFICATION OPPORTUNI-

TIES AT A REDUCED COST

 TRADE SHOW

 SCENIC LOCATION

Plan now to join us for excellent, quality presentations and
networking with colleagues from military/government,
industry and academia.

Registration Now Open Register Today! www.sstc-online.org

Research
Real World Lessons
Guidance, Policy & Standards
Concepts & Trends
Technological Tools Advances
Cyber Technologies
Modernization of Systems

Presentation Topics Include…

20 CrossTalk—May/June 2011

PEOPLE SOLUTIONS TO SOFTWARE PROBLEMS

1. Defense Acquisition University. “Glossary.” 2009.
2. The Standish Group. CHAOS Summary 2009. Boston, 2009.
3. Force, Defense Science Board Task. Department of Defense Policies and Procedures for the Acquisition of Information
 Technology. Washington: Office of the Under Secretary of Defense, 2009.
4. Ferguson, Jack. “Crouching Dragon, Hidden Software: Software in DoD Weapon Systems.” IEEE Software (2001):
 105-107.
5. FORCE, DEPARTMENT OF THE AIR. “Guidelines for Successful Acquisition and Management of Software-Intensive
 Systems.” 2003.
6. Information Technology Equipment Life-cycle. Michigan, 2004.
7. Daniels, Jody. Review of Acquisition for Transformation, Modernization, and Recapitalization. Carlisle: U.S. Army
 War College,Carlisle Barracks, 2006.
8. Statistics. 23 10 2010. 23 10 2010 <http://web.nvd.nist.gov/view/vuln/statistics-results?cid=4>.
9. The Standish Group. CHAOS Summary 2009. Boston, 2009.
10. Dominguez, Jorge. “The Curious Case of the CHAOS report 2009.” 2009.
11. About GAO. 11 09 2010 <http://www.gao.gov/about/index.html>.
12. Office, United States General Accounting. “Changing Conditions Drive Need for New F/A-22 Business Case.” 2004.
13. Charette , Robert N. “This Car Runs on Code.” IEEE Spectrum 2009.
14. “Electronics: Driving Automotive Innovation.” Pictures of the Future 2005, Fall ed.
15. America, One Hundred Eleventh Congress of the United States of. “National Defense Authorization Act for Fiscal
 Year 2010.” 2010.
16. Wells, Charles (LTC). “Information Technology Requirements Oversight and Managment (The “IT Box”.” 2009.
17. JROC. “Joint Requirements Oversight Council.” 2009.
18. “Defense Acquisition Guidebook.” 2010.
19. ISO/IEC. “Systems and software engineering - System life cycle processes.” 2008.
20. “Systems engineering — Application and management of the systems engineering process.” 2005.
21. IEEE. “IEEE Standard for Application and Management of the Systems Engineering Process.” 2005.
22. ANSI/EIA. “Processes for Engineering a System.” 1999.
23. Force, Secretary Of The Air. Life Cycle Systems Engineering. 2007
24. CMMI® for Development, Version 1.2. Pittsburgh: Carnegie Mellon University, 2006.
25. “ISO 9001.” Quality Management Systems. 2008.
26. Standardization, International Organization for. “ISO 12207.” Software Life Cycle Processes. 2008.
27. Software Engineering Institute - Carnegie Mellon. “Brief History of CMMI.” n.d.
28. Sutherland, Jeff and Ken Schwaber. “The Scrum Papers: Nut, Bolts, and Origins of an Agile Framework.” 2010.

Matthew R. Kennedy is a professor of
software engineering at DAU. He served in
the U.S. Air Force as a network intelligence
analyst and he has more than 10 years of
experience in IT. He has a bachelor’s and
master’s degree in computer science.

David A. Umphress, Ph.D., is an as-
sociate professor of computer science and
software engineering at Auburn University,
where he specializes in software develop-
ment processes. He has worked over the
past 30 years in various software and
system engineering capacities in military,
industry, and academia settings. He is
an IEEE certified software development
professional.

ABOUT THE AUTHOR

REFERENCESConclusion
The rapid technology refresh rate coupled with the need to

respond to changing requirements requires a complete agile
development process; one where the business, system, and
software areas contain an agile framework and work in unison
to create a successful SIS. A deficit in any of the three areas
will cripple the overall process. The increase in software within
today’s systems only increases the need for an agile systems
engineering process.

The emerging DoD Agile IT acquisition lifecycle and IT Box
provide the foundation for the business area’s transformation to
agility. Currently, nothing is being done to address the lack of re-
sponsiveness within the system area. The system area provides
the critical link between the business and software areas; as
such, lack of agility in the system area can have a debilitating ef-
fect on the overall development process. This increases the risk
of negating both the improvements being made in the business
area and the existing agile processes in the software area.

The development of an agile system engineering framework
is required to enhance the overall effectiveness of the SIS
development process. Key interfaces also need to be identi-
fied from the system area to the business and software areas
enabling seamless communication between adjacent areas.

Disclaimer:
®CMMI is registered in the U.S. Patent and Trademark Office

by Carnegie Mellon University.

